ПAmIBIA UПIVERSITY
 OF SCIEMCE AחD TECHחOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 35BAMS	LEVEL: 7
COURSE CODE: NUM702S	COURSE NAME: NUMERICAL METHODS 2
SESSION: \quad JANUARY 2020	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 90

SECOND OPPORTUNITY/SUPPLEMENTARY EXAMINATION QUESTION PAPER	
EXAMINER	Dr S.N. NEOSSI NGUETCHUE
MODERATOR:	Prof S.S. MOTSA

INSTRUCTIONS

1. Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in the calculations. All numerical results must be given using 4 to 5 decimals where necessary unless specified otherwise.
3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Attachments

None

Problem 1 [20 Marks]

1-1. Find the Padé approximation $R_{2,2}(x)$ for $f(x)=\ln (1+x) / x$ starting with the MacLaurin expansion

$$
\begin{equation*}
f(x)=1-\frac{x}{2}+\frac{x^{2}}{3}-\frac{x^{3}}{4}+\frac{x^{4}}{5}-\cdots . \tag{12}
\end{equation*}
$$

1-2. Use the result in 1-1. to establish $\ln (1+x) \approx R_{3,2}=\frac{30 x+21 x^{2}+x^{3}}{30+36 x+9 x^{2}}$ and express $R_{3,2}$ in continued fraction form.

Problem 2 [25 Marks]
For any non negative interger n we define Chebyshev polynomial of the first kind as

$$
T_{n}(x)=\cos (n \theta), \text { where } \theta=\arccos (x) \text {, for } x \in[-1,1] .
$$

$2-1$. Show the following property:

$$
T_{n} \text { has } n \text { distinct zeros } x_{k} \in[-1,1]: x_{k}=\cos \left(\frac{(2 k+1) \pi}{2 n}\right) \text { for } 0 \leq k \leq n-1 \text {. }
$$

2-2. Show that the Chebyshev polynomial T_{n} is a solution of the differential equation:

$$
\left(1-x^{2}\right) \frac{d^{2} f}{d x^{2}}-x \frac{d f}{d x}+n^{2} f=0 .
$$

2-3. Use the identity/formula: $\sum_{k=0}^{N} \cos (\varphi+k \alpha)=\frac{\sin \frac{(N+1) \alpha}{2} \cos \left(\varphi+\frac{N}{2} \alpha\right)}{\sin \frac{\alpha}{2}}$ to show that:

$$
\sum_{k=0}^{N} T_{m}\left(x_{k}\right) T_{n}\left(x_{k}\right)=0, \text { for } m \neq n
$$

where $x_{k}=\cos \left[\frac{(2 k+1) \pi}{2(N+1)}\right], 0 \leq k \leq N$, are the roots of T_{N+1}.

Problem 3 [45 Marks]
$3-1$. Given the integral

$$
\int_{0}^{3} \frac{\sin (2 x)}{1+x^{5}} d x=0.6717578646 \cdots
$$

3-1-1. Compute $T(J)=R(J, 0)$ for $J=0,1,2,3$ using the sequential trapezoidal rule.
3-1-2. Use the results in 3-1-1. and Romberg's rule to compute the values for the sequential Simpson rule $\{R(J, 1)\}$, sequential Boole rule $\{R(J, 2)\}$ and the third impprovement $\{R(J, 3)\}$. Display your results in a tabular form.

3-2. State the three-point Gaussian Rule for a continuous function f on the interval $[-1,1]$ and show that the rule is exact for $f(x)=5 x^{4}$.

3-3. Use Jacobi's method to find the eigenpairs of the matrix

$$
A=\left[\begin{array}{ccc}
1 & -2 & 4 \\
-2 & 5 & -2 \\
4 & -2 & 1
\end{array}\right]
$$

God bless you !!!

